%%html
<script src="https://bits.csb.pitt.edu/preamble.js"></script>
Putting your applications online can make them much more useful.
%%html
<div id="whichrather" style="width: 500px"></div>
<script>
var divid = '#whichrather';
jQuery(divid).asker({
id: divid,
question: "Which would you rather use?",
answers: ['A website','A python script'],
server: "https://bits.csb.pitt.edu/asker.js/example/asker.cgi",
charter: chartmaker})
$(".jp-InputArea .o:contains(html)").closest('.jp-InputArea').hide();
</script>
We want a user to be able to run a python script through a web site.
They should be able to specify the input arguments.
They need to see the result (note this implies the python program should finish quickly).
The python script is run on the server.
CGI provides a standard interface to let webservers execute programs.
http://bits.csb.pitt.edu/pgammodel/pgam.cgi
pgam.cgi is a python script, but because it has the .cgi extension, instead of displaying the contents of the file, the web server displays the output of running the script.
This means the output of pgam.cgi needs to be a valid HTML response.
#!/usr/bin/env python3
print("Content-Type: text/html") # HTML is following
print() # blank line, end of headers
import cgi
import cgitb
cgitb.enable()
from pysb.integrate import odesolve
import numpy as np
from model import model
print("""
<style>
body {
font-family: 'Helvetica Neue', 'Helvetica', 'Arial', sans-serif;
padding-left: 0.5em;
}
fieldset {
display: inline-block;
border:1px solid grey;
border-radius:8px;
vertical-align: top;
}
input {
margin-left: 0.25em;
}
#conc td {
padding-right: 1em;
}
table {
display: inline-block;
vertical-align: top
}
#submit {
margin: 0.5em;
font-size: 2em;
}
</style>
""")
form = cgi.FieldStorage()
time = float(form.getfirst("time","1200"))
model.parameters['INH_0'].value = float(form.getfirst("INH_0", "500"))
model.parameters['PG3_0'].value = float(form.getfirst("PG3_0", " 10000"))
model.parameters['ADP_0'].value = float(form.getfirst("ADP_0", " 10000"))
model.parameters['NADH_0'].value = float(form.getfirst("NADH_0", "2000"))
model.parameters['PGM_0'].value = float(form.getfirst("PGM_0", "14.9"))
model.parameters['ENO_0'].value = float(form.getfirst("ENO_0", "2.1"))
model.parameters['PKM_0'].value = float(form.getfirst("PKM_0", "0.60"))
model.parameters['LDH_0'].value = float(form.getfirst("LDH_0", "0.55"))
model.parameters['PGM_PG2kf'].value = float(form.getfirst("PGM_PG2kf", "0.04312"))
model.parameters['PGM_PG2kr'].value = float(form.getfirst("PGM_PG2kr", "0.014426"))
model.parameters['PGM_PG2kc'].value = float(form.getfirst("PGM_PG2kc", "0.387171"))
model.parameters['ENO_PG3kf'].value = float(form.getfirst("ENO_PG3kf", "0.011318"))
model.parameters['ENO_PG3kr'].value = float(form.getfirst("ENO_PG3kr", "0.013121"))
model.parameters['ENO_PG3kc'].value = float(form.getfirst("ENO_PG3kc", "6.706254"))
model.parameters['PKM_PEPkf'].value = float(form.getfirst("PKM_PEPkf", "0.002023"))
model.parameters['PKM_PEPkr'].value = float(form.getfirst("PKM_PEPkr", "0.016084"))
model.parameters['PKM_PEPkc'].value = float(form.getfirst("PKM_PEPkc", "7.880579"))
model.parameters['PKM_ADPkf'].value = float(form.getfirst("PKM_ADPkf", "0.002023"))
model.parameters['PKM_ADPkr'].value = float(form.getfirst("PKM_ADPkr", "0.016084"))
model.parameters['LDH_PYRkf'].value = float(form.getfirst("LDH_PYRkf", "0.029544"))
model.parameters['LDH_PYRkr'].value = float(form.getfirst("LDH_PYRkr", "0.009655"))
model.parameters['LDH_PYRkc'].value = float(form.getfirst("LDH_PYRkc", "14.775252"))
model.parameters['LDH_NADkf'].value = float(form.getfirst("LDH_NADkf", "0.029544"))
model.parameters['LDH_NADkr'].value = float(form.getfirst("LDH_NADkr", "0.009655"))
model.parameters['revLDH_PYRkf'].value = float(form.getfirst("revLDH_PYRkf", "0.00014"))
model.parameters['revLDH_PYRkr'].value = float(form.getfirst("revLDH_PYRkr", "20.677645"))
model.parameters['revLDH_PYRkc'].value = float(form.getfirst("revLDH_PYRkc", "0.01928"))
model.parameters['revLDH_NADkf'].value = float(form.getfirst("revLDH_NADkf", "0.00014"))
model.parameters['revLDH_NADkr'].value = float(form.getfirst("revLDH_NADkr", "20.677645"))
model.parameters['PGM_INHkf'].value = float(form.getfirst("PGM_INHkf", "0"))
model.parameters['PGM_INHkr'].value = float(form.getfirst("PGM_INHkr", "0"))
model.parameters['ENO_INHkf'].value = float(form.getfirst("ENO_INHkf", "0"))
model.parameters['ENO_INHkr'].value = float(form.getfirst("ENO_INHkr", "0"))
model.parameters['PKM_INHkf'].value = float(form.getfirst("PKM_INHkf", "0"))
model.parameters['PKM_INHkr'].value = float(form.getfirst("PKM_INHkr", "0"))
model.parameters['LDH_INHkf'].value = float(form.getfirst("LDH_INHkf", "0"))
model.parameters['LDH_INHkr'].value = float(form.getfirst("LDH_INHkr", "0"))
t = np.linspace(0,time)
out = odesolve(model, t)
print("""
<head><title>PGAM Assay Model</title></head>
<body>
The default parameters were fit to experimental data, as shown <a href="fitparams.png">here</a>.
<form action="pgam.cgi" style="vertical-align:top">
<fieldset>
<legend>INH</legend>
<label for=i1>PGM kf</label> <input id=l1 size=8 type="text" name="PGM_INHkf" value="%s">
<br>
<label for=i2>PGM kr</label> <input id=l2 size=8 type="text" name="PGM_INHkr" value="%s">
<hr>
<label for=i1>ENO kf</label> <input id=l1 size=8 type="text" name="ENO_INHkf" value="%s">
<br>
<label for=i2>ENO kr</label> <input id=l2 size=8 type="text" name="ENO_INHkr" value="%s">
<hr>
<label for=i1>PKM kf</label> <input id=l1 size=8 type="text" name="PKM_INHkf" value="%s">
<br>
<label for=i2>PKM kr</label> <input id=l2 size=8 type="text" name="PKM_INHkr" value="%s">
<hr>
<label for=i1>LDH kf</label> <input id=l1 size=8 type="text" name="LDH_INHkf" value="%s">
<br>
<label for=i2>LDH kr</label> <input id=l2 size=8 type="text" name="LDH_INHkr" value="%s">
</fieldset>
<table>
<tr><td>
<fieldset>
<legend>PGM</legend>
<label for=i1>kf</label> <input id=l1 size=8 type="text" name="PGM_PG2kf" value="%s">
<br>
<label for=i2>kr</label> <input id=l2 size=8 type="text" name="PGM_PG2kr" value="%s">
<br>
<label for=i2>kc</label> <input id=l2 size=8 type="text" name="PGM_PG2kc" value="%s">
</fieldset>
</td></tr>
<tr><td>
<fieldset>
<legend>ENO</legend>
<label for=i1>kf</label> <input id=l1 size=8 type="text" name="ENO_PG3kf" value="%s">
<br>
<label for=i2>kr</label> <input id=l2 size=8 type="text" name="ENO_PG3kr" value="%s">
<br>
<label for=i2>kc</label> <input id=l2 size=8 type="text" name="ENO_PG3kc" value="%s">
</fieldset>
</td></tr>
</table>
<table id=rtab>
<tr>
<td>
<fieldset>
<legend>PKM</legend>
<label for=i1>kf</label> <input id=l1 size=8 type="text" name="PKM_PEPkf" value="%s">
<br>
<label for=i2>kr</label> <input id=l2 size=8 type="text" name="PKM_PEPkr" value="%s">
<br>
<label for=i2>kc</label> <input id=l2 size=8 type="text" name="PKM_PEPkc" value="%s">
<br>
<label for=i2>kf (ADP)</label> <input id=l2 size=8 type="text" name="PKM_ADPkf" value="%s">
<br>
<label for=i2>kr (ADP)</label> <input id=l2 size=8 type="text" name="PKM_ADPkr" value="%s">
</fieldset>
<fieldset>
<legend>LDH</legend>
<label for=i1>kf</label> <input id=l1 size=8 type="text" name="LDH_PYRkf" value="%s">
<br>
<label for=i2>kr</label> <input id=l2 size=8 type="text" name="LDH_PYRkr" value="%s">
<br>
<label for=i2>kc</label> <input id=l2 size=8 type="text" name="LDH_PYRkc" value="%s">
<br>
<label for=i2>kf (NADH)</label> <input id=l2 size=8 type="text" name="LDH_NADkf" value="%s">
<br>
<label for=i2>kr (NADH)</label> <input id=l2 size=8 type="text" name="LDH_NADkr" value="%s">
</fieldset>
<fieldset>
<legend>Reverse LDH</legend>
<label for=i1>kf</label> <input id=l1 size=8 type="text" name="revLDH_PYRkf" value="%s">
<br>
<label for=i2>kr</label> <input id=l2 size=8 type="text" name="revLDH_PYRkr" value="%s">
<br>
<label for=i2>kc</label> <input id=l2 size=8 type="text" name="revLDH_PYRkc" value="%s">
<br>
<label for=i2>kf (NAD)</label> <input id=l2 size=8 type="text" name="revLDH_NADkf" value="%s">
<br>
<label for=i2>kr (NAD)</label> <input id=l2 size=8 type="text" name="revLDH_NADkr" value="%s">
</fieldset>
</td></tr>
<tr><td>
<fieldset>
<legend>Initial Amounts</legend>
<table id=conc>
<tr>
<td><label for=i1>PGM</label> <input id=l1 size=6 type="text" name="PGM_0" value="%s"></td>
<td><label for=i2>ENO</label> <input id=l2 size=6 type="text" name="ENO_0" value="%s"></td>
<td><label for=i1>PKM</label> <input id=l1 size=6 type="text" name="PKM_0" value="%s"></td>
<td><label for=i2>LDH</label> <input id=l2 size=6 type="text" name="LDH_0" value="%s"></td>
</tr>
<tr>
<td><label for=i1>INH</label> <input id=l1 size=6 type="text" name="INH_0" value="%s"></td>
<td><label for=i2>3PG</label> <input id=l2 size=6 type="text" name="PG3_0" value="%s"></td>
<td><label for=i1>ADP</label> <input id=l1 size=6 type="text" name="ADP_0" value="%s"></td>
<td><label for=i2>NADH_0</label> <input id=l2 size=6 type="text" name="NADH_0" value="%s"></td>
</tr>
</table>
</fieldset>
</td>
</tr>
</table>
<br>
<div style="padding-left: 35em">
<h3 style="display: inline; padding-right: 1em">Time</h3>
<input size=8 type="text" name="time" value ="%s">
<input type="submit" id="submit" value="Submit">
</div>
</form>
""" % (
model.parameters['PGM_INHkf'].value, model.parameters['PGM_INHkr'].value,
model.parameters['ENO_INHkf'].value, model.parameters['ENO_INHkr'].value,
model.parameters['PKM_INHkf'].value, model.parameters['PKM_INHkr'].value,
model.parameters['LDH_INHkf'].value, model.parameters['LDH_INHkr'].value,
model.parameters['PGM_PG2kf'].value, model.parameters['PGM_PG2kr'].value,model.parameters['PGM_PG2kc'].value,
model.parameters['ENO_PG3kf'].value, model.parameters['ENO_PG3kr'].value,model.parameters['ENO_PG3kc'].value,
model.parameters['PKM_PEPkf'].value, model.parameters['PKM_PEPkr'].value,model.parameters['PKM_PEPkc'].value,
model.parameters['PKM_ADPkf'].value, model.parameters['PKM_ADPkr'].value,
model.parameters['LDH_PYRkf'].value, model.parameters['LDH_PYRkr'].value,model.parameters['LDH_PYRkc'].value,
model.parameters['LDH_NADkf'].value, model.parameters['LDH_NADkr'].value,
model.parameters['revLDH_PYRkf'].value, model.parameters['revLDH_PYRkr'].value,model.parameters['revLDH_PYRkc'].value,
model.parameters['revLDH_NADkf'].value, model.parameters['revLDH_NADkr'].value,
model.parameters['PGM_0'].value,
model.parameters['ENO_0'].value,
model.parameters['PKM_0'].value,
model.parameters['LDH_0'].value,
model.parameters['INH_0'].value,
model.parameters['PG3_0'].value,
model.parameters['ADP_0'].value,
model.parameters['NADH_0'].value,
time
)
)
pg3data = ','.join(np.round(out['oPG3'],2).astype(str))
pg2data = ','.join(np.round(out['oPG2'],2).astype(str))
pepdata = ','.join(np.round(out['oPEP'],2).astype(str))
pyrdata = ','.join(np.round(out['oPYR'],2).astype(str))
lacdata = ','.join(np.round(out['oLAC'],2).astype(str))
nadhdata= ','.join(np.round(out['oNADH'],2).astype(str))
times = ','.join(np.round(t).astype(str))
print("""
<script src="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/1.0.2/Chart.min.js">
</script>
<script src="https://code.jquery.com/jquery-1.11.3.min.js"></script>
<div style="position: relative; width: 800px">
<div style="position: absolute; right: 0; background-color: white; border: 1px solid black; padding-right: 1em" id="legend"></div>
<canvas id="chart" width="900" height="500"></canvas>
</div>
<script>
var data = {
labels: [%s],
datasets: [
{
label: "3PG",
strokeColor: "#0e0",
pointColor: "#0e0",
pointStrokeColor: "#fff",
pointHighlightFill: "#fff",
pointHighlightStroke: "0e0",
data: [%s]
},
{
label: "2PG",
strokeColor: "#0ee",
pointColor: "#0ee",
pointStrokeColor: "#fff",
pointHighlightFill: "#fff",
pointHighlightStroke: "#0ee",
data: [%s]
},
{
label: "PEP",
strokeColor: "#00f",
pointColor: "#00f",
pointStrokeColor: "#fff",
pointHighlightFill: "#fff",
pointHighlightStroke: "#00f",
data: [%s]
},
{
label: "PYR",
strokeColor: "#ee0",
pointColor: "#ee0",
pointStrokeColor: "#fff",
pointHighlightFill: "#fff",
pointHighlightStroke: "#ee0",
data: [%s]
},
{
label: "LAC",
strokeColor: "#f0f",
pointColor: "#f0f",
pointStrokeColor: "#fff",
pointHighlightFill: "#fff",
pointHighlightStroke: "#f0f",
data: [%s]
},
{
label: "NADH",
strokeColor: "#f00",
pointColor: "#f00",
pointStrokeColor: "#fff",
pointHighlightFill: "#fff",
pointHighlightStroke: "#f00",
strokeWidth: 4,
data: [%s]
}
]
};
""" % (times, pg3data, pg2data,pepdata,pyrdata,lacdata,nadhdata))
print("""
$(function() {
// Get the context of the canvas element we want to select
var ctx = document.getElementById("chart").getContext("2d");
console.log(ctx);
var chart = new Chart(ctx).Line(data, {datasetFill: false, scaleIntegersOnly: false, scaleBeginAtZero: true, """)
print(r'multiTooltipTemplate: "<%= datasetLabel %> - <%= value %>",')
print(r'legendTemplate : "<ul class=\"<%=name.toLowerCase()%>-legend\"><% for (var i=0; i<datasets.length; i++){%><span style=\"color:<%=datasets[i].strokeColor%>\"><li><%if(datasets[i].label){%><%=datasets[i].label%><%}%></li></span><%}%></ul>"')
print("""
});
var legend = chart.generateLegend();
//and append it to your page somewhere
$("#legend").append(legend);
});
</script>
</body>
""")
Most web servers will have CGI disabled by default (or only enable in a specific directory like cgi-bin).
https://httpd.apache.org/docs/2.4/howto/cgi.html#configuring
For apache you have to
Example apache configuration file:
<Directory "/usr/local/apache2/htdocs/somedir">
Options +ExecCGI
AddHandler cgi-script .cgi .py
</Directory>
Debugging CGI programs is annoying, as you are not running the program, the webserver is. If there's a problem, the error message returned to the user in the browser is usually generic. More informative error messages might be in the logs of the webserver.
To aid in the debugging of python errors, enable cgitb, which will (sometimes) show the errors in the browser instead of the log files.
Values are provided to CGI programs through GET and PUT requests, most likely those generated using form data.
<form action="pgam.cgi" style="vertical-align:top">
<fieldset>
<legend>INH</legend>
<label for=i1>PGM kf</label> <input id=l1 size=8 type="text" name="PGM_INHkf" value="0.3">
<label for=i2>PGM kr</label> <input id=l2 size=8 type="text" name="PGM_INHkr" value="0.2">
<label for=i1>ENO kf</label> <input id=l1 size=8 type="text" name="ENO_INHkf" value="0.0">
<label for=i2>ENO kr</label> <input id=l2 size=8 type="text" name="ENO_INHkr" value="0.0">
<label for=i1>PKM kf</label> <input id=l1 size=8 type="text" name="PKM_INHkf" value="0.0">
<label for=i2>PKM kr</label> <input id=l2 size=8 type="text" name="PKM_INHkr" value="0.0">
<label for=i1>LDH kf</label> <input id=l1 size=8 type="text" name="LDH_INHkf" value="0.0">
<label for=i2>LDH kr</label> <input id=l2 size=8 type="text" name="LDH_INHkr" value="0.0">
</fieldset>
These values can be accessed through the cgi module (what is happening behind the scenes as they are being set as environment variables before the script is called).
The name from the input element becomes a field.
import cgi
form = cgi.FieldStorage()
model.parameters['PGM_INHkf'].value = float(form.getfirst("PGM_INHkf", "0"))
model.parameters['PGM_INHkr'].value = float(form.getfirst("PGM_INHkr", "0"))
model.parameters['ENO_INHkf'].value = float(form.getfirst("ENO_INHkf", "0"))
model.parameters['ENO_INHkr'].value = float(form.getfirst("ENO_INHkr", "0"))
model.parameters['PKM_INHkf'].value = float(form.getfirst("PKM_INHkf", "0"))
model.parameters['PKM_INHkr'].value = float(form.getfirst("PKM_INHkr", "0"))
model.parameters['LDH_INHkf'].value = float(form.getfirst("LDH_INHkf", "0"))
model.parameters['LDH_INHkr'].value = float(form.getfirst("LDH_INHkr", "0"))
form['PKM_INHkf']
), this returns another FieldStorage objectIf an item is a file upload (<input type=file>
), getvalue will return contents of object. Can also get file object:
f = form['filefield'].file
The stdout of the script becomes the source of the web page, but what about images?
import base64
img = open('imgs/dog.png', 'rb').read()
data = base64.b64encode(img) # returns a byte array
img_tag = '<img src="data:image/png;base64,{0}">'.format(data.decode())
print(img_tag)
<img src="">
%%html
<div id="rb" style="width: 500px"></div>
<script>
var divid = '#rb';
jQuery(divid).asker({
id: divid,
question: "What is the b in rb for in the open?",
answers: ['Binary','Big','Bytes','Blue'],
server: "https://bits.csb.pitt.edu/asker.js/example/asker.cgi",
charter: chartmaker})
$(".jp-InputArea .o:contains(html)").closest('.jp-InputArea').hide();
</script>
Alternatively, as is the case with pgam.cgi, we can generate visualizations on the client side.
This means we must write some JavaScript
print('''
<script src="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/1.0.2/Chart.min.js">
</script>
<script src="https://code.jquery.com/jquery-1.11.3.min.js"></script>
<div style="position: relative; width: 800px">
<div style="position: absolute; right: 0; background-color: white; border: 1px solid black; padding-right: 1em" id="legend"></div>
<canvas id="chart" width="900" height="500"></canvas>
</div>
<script>
var data = {
labels: [%s],
datasets: [
{
label: "3PG",
strokeColor: "#0e0",
pointColor: "#0e0",
pointStrokeColor: "#fff",
pointHighlightFill: "#fff",
pointHighlightStroke: "0e0",
data: [%s]
},
'''% (times, pg3data))
print("""
$(function() {
// Get the context of the canvas element we want to select
var ctx = document.getElementById("chart").getContext("2d");
console.log(ctx);
var chart = new Chart(ctx).Line(data, {datasetFill: false, scaleIntegersOnly: false, scaleBeginAtZero: true, """)
print(r'multiTooltipTemplate: "<%= datasetLabel %> - <%= value %>",')
print(r'legendTemplate : "<ul class=\"<%=name.toLowerCase()%>-legend\"><% for (var i=0; i<datasets.length; i++){%><span style=\"color:<%=datasets[i].strokeColor%>\"><li><%if(datasets[i].label){%><%=datasets[i].label%><%}%></li></span><%}%></ul>"')
print("""
});
""")
<style>
body {
font-family: 'Helvetica Neue', 'Helvetica', 'Arial', sans-serif;
padding-left: 0.5em;
}
fieldset {
display: inline-block;
border:1px solid grey;
border-radius:8px;
vertical-align: top;
}
input {
margin-left: 0.25em;
}
#conc td {
padding-right: 1em;
}
table {
display: inline-block;
vertical-align: top
}
#submit {
margin: 0.5em;
font-size: 2em;
}
</style>
<head><title>PGAM Assay Model</title></head>
<body>
The default parameters were fit to experimental data, as shown <a href="fitparams.png">here</a>.
<form action="pgam.cgi" style="vertical-align:top">
<fieldset>
<legend>INH</legend>
<label for=i1>PGM kf</label> <input id=l1 size=8 type="text" name="PGM_INHkf" value="0.0">
<br>
<label for=i2>PGM kr</label> <input id=l2 size=8 type="text" name="PGM_INHkr" value="0.0">
<hr>
<label for=i1>ENO kf</label> <input id=l1 size=8 type="text" name="ENO_INHkf" value="0.0">
<br>
<label for=i2>ENO kr</label> <input id=l2 size=8 type="text" name="ENO_INHkr" value="0.0">
<hr>
<label for=i1>PKM kf</label> <input id=l1 size=8 type="text" name="PKM_INHkf" value="0.0">
<br>
<label for=i2>PKM kr</label> <input id=l2 size=8 type="text" name="PKM_INHkr" value="0.0">
<hr>
<label for=i1>LDH kf</label> <input id=l1 size=8 type="text" name="LDH_INHkf" value="0.0">
<br>
<label for=i2>LDH kr</label> <input id=l2 size=8 type="text" name="LDH_INHkr" value="0.0">
</fieldset>
<table>
<tr><td>
<fieldset>
<legend>PGM</legend>
<label for=i1>kf</label> <input id=l1 size=8 type="text" name="PGM_PG2kf" value="0.04312">
<br>
<label for=i2>kr</label> <input id=l2 size=8 type="text" name="PGM_PG2kr" value="0.014426">
<br>
<label for=i2>kc</label> <input id=l2 size=8 type="text" name="PGM_PG2kc" value="0.387171">
</fieldset>
</td></tr>
<tr><td>
<fieldset>
<legend>ENO</legend>
<label for=i1>kf</label> <input id=l1 size=8 type="text" name="ENO_PG3kf" value="0.011318">
<br>
<label for=i2>kr</label> <input id=l2 size=8 type="text" name="ENO_PG3kr" value="0.013121">
<br>
<label for=i2>kc</label> <input id=l2 size=8 type="text" name="ENO_PG3kc" value="6.706254">
</fieldset>
</td></tr>
</table>
<table id=rtab>
<tr>
<td>
<fieldset>
<legend>PKM</legend>
<label for=i1>kf</label> <input id=l1 size=8 type="text" name="PKM_PEPkf" value="0.002023">
<br>
<label for=i2>kr</label> <input id=l2 size=8 type="text" name="PKM_PEPkr" value="0.016084">
<br>
<label for=i2>kc</label> <input id=l2 size=8 type="text" name="PKM_PEPkc" value="7.880579">
<br>
<label for=i2>kf (ADP)</label> <input id=l2 size=8 type="text" name="PKM_ADPkf" value="0.002023">
<br>
<label for=i2>kr (ADP)</label> <input id=l2 size=8 type="text" name="PKM_ADPkr" value="0.016084">
</fieldset>
<fieldset>
<legend>LDH</legend>
<label for=i1>kf</label> <input id=l1 size=8 type="text" name="LDH_PYRkf" value="0.029544">
<br>
<label for=i2>kr</label> <input id=l2 size=8 type="text" name="LDH_PYRkr" value="0.009655">
<br>
<label for=i2>kc</label> <input id=l2 size=8 type="text" name="LDH_PYRkc" value="14.775252">
<br>
<label for=i2>kf (NADH)</label> <input id=l2 size=8 type="text" name="LDH_NADkf" value="0.029544">
<br>
<label for=i2>kr (NADH)</label> <input id=l2 size=8 type="text" name="LDH_NADkr" value="0.009655">
</fieldset>
<fieldset>
<legend>Reverse LDH</legend>
<label for=i1>kf</label> <input id=l1 size=8 type="text" name="revLDH_PYRkf" value="0.00014">
<br>
<label for=i2>kr</label> <input id=l2 size=8 type="text" name="revLDH_PYRkr" value="20.677645">
<br>
<label for=i2>kc</label> <input id=l2 size=8 type="text" name="revLDH_PYRkc" value="0.01928">
<br>
<label for=i2>kf (NAD)</label> <input id=l2 size=8 type="text" name="revLDH_NADkf" value="0.00014">
<br>
<label for=i2>kr (NAD)</label> <input id=l2 size=8 type="text" name="revLDH_NADkr" value="20.677645">
</fieldset>
</td></tr>
<tr><td>
<fieldset>
<legend>Initial Amounts</legend>
<table id=conc>
<tr>
<td><label for=i1>PGM</label> <input id=l1 size=6 type="text" name="PGM_0" value="14.9"></td>
<td><label for=i2>ENO</label> <input id=l2 size=6 type="text" name="ENO_0" value="2.1"></td>
<td><label for=i1>PKM</label> <input id=l1 size=6 type="text" name="PKM_0" value="0.6"></td>
<td><label for=i2>LDH</label> <input id=l2 size=6 type="text" name="LDH_0" value="0.55"></td>
</tr>
<tr>
<td><label for=i1>INH</label> <input id=l1 size=6 type="text" name="INH_0" value="500.0"></td>
<td><label for=i2>3PG</label> <input id=l2 size=6 type="text" name="PG3_0" value="10000.0"></td>
<td><label for=i1>ADP</label> <input id=l1 size=6 type="text" name="ADP_0" value="10000.0"></td>
<td><label for=i2>NADH_0</label> <input id=l2 size=6 type="text" name="NADH_0" value="2000.0"></td>
</tr>
</table>
</fieldset>
</td>
</tr>
</table>
<br>
<div style="padding-left: 35em">
<h3 style="display: inline; padding-right: 1em">Time</h3>
<input size=8 type="text" name="time" value ="1200.0">
<input type="submit" id="submit" value="Submit">
</div>
</form>
<script src="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/1.0.2/Chart.min.js">
</script>
<script src="https://code.jquery.com/jquery-1.11.3.min.js"></script>
<div style="position: relative; width: 800px">
<div style="position: absolute; right: 0; background-color: white; border: 1px solid black; padding-right: 1em" id="legend"></div>
<canvas id="chart" width="900" height="500"></canvas>
</div>
<script>
var data = {
labels: [0.0,24.0,49.0,73.0,98.0,122.0,147.0,171.0,196.0,220.0,245.0,269.0,294.0,318.0,343.0,367.0,392.0,416.0,441.0,465.0,490.0,514.0,539.0,563.0,588.0,612.0,637.0,661.0,686.0,710.0,735.0,759.0,784.0,808.0,833.0,857.0,882.0,906.0,931.0,955.0,980.0,1004.0,1029.0,1053.0,1078.0,1102.0,1127.0,1151.0,1176.0,1200.0],
datasets: [
{
label: "3PG",
strokeColor: "#0e0",
pointColor: "#0e0",
pointStrokeColor: "#fff",
pointHighlightFill: "#fff",
pointHighlightStroke: "0e0",
data: [10000.0,9843.98,9702.84,9561.7,9420.56,9279.42,9138.29,8997.15,8856.02,8714.9,8573.77,8432.65,8291.53,8150.41,8009.29,7868.18,7727.07,7585.97,7444.86,7303.76,7162.67,7021.58,6880.49,6739.4,6598.32,6457.25,6316.18,6175.11,6034.05,5892.99,5751.94,5610.89,5469.85,5328.82,5187.79,5046.77,4905.76,4764.75,4623.75,4482.76,4341.79,4200.82,4059.86,3918.91,3777.97,3637.05,3496.14,3355.25,3214.37,3073.51]
},
{
label: "2PG",
strokeColor: "#0ee",
pointColor: "#0ee",
pointStrokeColor: "#fff",
pointHighlightFill: "#fff",
pointHighlightStroke: "#0ee",
data: [0.0,110.38,182.62,233.83,271.74,300.55,322.83,340.29,354.09,365.07,373.86,380.91,386.6,391.2,394.91,397.92,400.37,402.35,403.96,405.27,406.33,407.19,407.89,408.46,408.92,409.29,409.59,409.83,410.02,410.17,410.29,410.38,410.45,410.5,410.54,410.56,410.57,410.58,410.57,410.56,410.54,410.52,410.49,410.46,410.42,410.37,410.33,410.27,410.22,410.15]
},
{
label: "PEP",
strokeColor: "#00f",
pointColor: "#00f",
pointStrokeColor: "#fff",
pointHighlightFill: "#fff",
pointHighlightStroke: "#00f",
data: [0.0,30.11,97.06,182.91,279.63,382.88,490.08,599.59,710.33,821.56,932.77,1043.61,1153.83,1263.26,1371.78,1479.33,1585.84,1691.32,1795.73,1899.1,2001.42,2102.73,2203.05,2302.4,2400.81,2498.31,2594.94,2690.72,2785.69,2879.87,2973.3,3066.01,3158.02,3249.36,3340.06,3430.14,3519.63,3608.55,3696.93,3784.79,3872.14,3959.01,4045.42,4131.39,4216.93,4302.06,4386.8,4471.17,4555.17,4638.84]
},
{
label: "PYR",
strokeColor: "#ee0",
pointColor: "#ee0",
pointStrokeColor: "#fff",
pointHighlightFill: "#fff",
pointHighlightStroke: "#ee0",
data: [0.0,0.28,1.71,4.49,8.43,13.25,18.71,24.6,30.74,37.02,43.35,49.65,55.89,62.02,68.03,73.91,79.64,85.22,90.64,95.91,101.02,105.99,110.81,115.5,120.04,124.45,128.74,132.9,136.96,140.9,144.73,148.47,152.12,155.68,159.17,162.58,165.94,169.25,172.52,175.77,179.01,182.26,185.56,188.94,192.44,196.14,200.11,204.48,209.44,215.23]
},
{
label: "LAC",
strokeColor: "#f0f",
pointColor: "#f0f",
pointStrokeColor: "#fff",
pointHighlightFill: "#fff",
pointHighlightStroke: "#f0f",
data: [0.0,0.03,0.38,1.56,4.06,8.24,14.38,22.61,33.02,45.63,60.4,77.29,96.25,117.19,140.03,164.69,191.09,219.15,248.79,279.93,312.51,346.45,381.69,418.17,455.82,494.6,534.45,575.33,617.17,659.94,703.6,748.1,793.41,839.48,886.28,933.77,981.92,1030.68,1080.03,1129.93,1180.32,1231.18,1282.46,1334.09,1386.01,1438.14,1490.37,1542.57,1594.53,1645.98]
},
{
label: "NADH",
strokeColor: "#f00",
pointColor: "#f00",
pointStrokeColor: "#fff",
pointHighlightFill: "#fff",
pointHighlightStroke: "#f00",
strokeWidth: 4,
data: [2000.0,1999.42,1999.07,1997.89,1995.4,1991.21,1985.08,1976.84,1966.43,1953.83,1939.06,1922.17,1903.21,1882.28,1859.44,1834.78,1808.38,1780.32,1750.68,1719.54,1686.97,1653.03,1617.79,1581.31,1543.66,1504.88,1465.03,1424.16,1382.32,1339.55,1295.89,1251.39,1206.09,1160.02,1113.23,1065.74,1017.59,968.83,919.49,869.6,819.21,768.36,717.09,665.47,613.56,561.44,509.22,457.04,405.09,353.67]
}
]
};
$(function() {
// Get the context of the canvas element we want to select
var ctx = document.getElementById("chart").getContext("2d");
console.log(ctx);
var chart = new Chart(ctx).Line(data, {datasetFill: false, scaleIntegersOnly: false, scaleBeginAtZero: true,
multiTooltipTemplate: "<%= datasetLabel %> - <%= value %>",
legendTemplate : "<ul class=\"<%=name.toLowerCase()%>-legend\"><% for (var i=0; i<datasets.length; i++){%><span style=\"color:<%=datasets[i].strokeColor%>\"><li><%if(datasets[i].label){%><%=datasets[i].label%><%}%></li></span><%}%></ul>"
});
var legend = chart.generateLegend();
//and append it to your page somewhere
$("#legend").append(legend);
});
</script>
</body>
#!/usr/bin/env python3
import cgi
import cgitb
from pysb.integrate import odesolve
import numpy as np
from model import model
cgitb.enable()
print("Content-Type: text/html") # HTML is following
print() # blank line, end of headers
print("""
<style>
body {
font-family: 'Helvetica Neue', 'Helvetica', 'Arial', sans-serif;
padding-left: 0.5em;
}
fieldset {
display: inline-block;
border:1px solid grey;
border-radius:8px;
vertical-align: top;
}
input {
margin-left: 0.25em;
}
#conc td {
padding-right: 1em;
}
table {
display: inline-block;
vertical-align: top
}
#submit {
margin: 0.5em;
font-size: 2em;
}
</style>
""")
form = cgi.FieldStorage()
time = float(form.getfirst("time","1200"))
model.parameters['INH_0'].value = float(form.getfirst("INH_0", "500"))
model.parameters['PG3_0'].value = float(form.getfirst("PG3_0", " 10000"))
model.parameters['ADP_0'].value = float(form.getfirst("ADP_0", " 10000"))
model.parameters['NADH_0'].value = float(form.getfirst("NADH_0", "2000"))
model.parameters['PGM_0'].value = float(form.getfirst("PGM_0", "14.9"))
model.parameters['ENO_0'].value = float(form.getfirst("ENO_0", "2.1"))
model.parameters['PKM_0'].value = float(form.getfirst("PKM_0", "0.60"))
model.parameters['LDH_0'].value = float(form.getfirst("LDH_0", "0.55"))
model.parameters['PGM_PG2kf'].value = float(form.getfirst("PGM_PG2kf", "0.04312"))
model.parameters['PGM_PG2kr'].value = float(form.getfirst("PGM_PG2kr", "0.014426"))
model.parameters['PGM_PG2kc'].value = float(form.getfirst("PGM_PG2kc", "0.387171"))
model.parameters['ENO_PG3kf'].value = float(form.getfirst("ENO_PG3kf", "0.011318"))
model.parameters['ENO_PG3kr'].value = float(form.getfirst("ENO_PG3kr", "0.013121"))
model.parameters['ENO_PG3kc'].value = float(form.getfirst("ENO_PG3kc", "6.706254"))
model.parameters['PKM_PEPkf'].value = float(form.getfirst("PKM_PEPkf", "0.002023"))
model.parameters['PKM_PEPkr'].value = float(form.getfirst("PKM_PEPkr", "0.016084"))
model.parameters['PKM_PEPkc'].value = float(form.getfirst("PKM_PEPkc", "7.880579"))
model.parameters['PKM_ADPkf'].value = float(form.getfirst("PKM_ADPkf", "0.002023"))
model.parameters['PKM_ADPkr'].value = float(form.getfirst("PKM_ADPkr", "0.016084"))
model.parameters['LDH_PYRkf'].value = float(form.getfirst("LDH_PYRkf", "0.029544"))
model.parameters['LDH_PYRkr'].value = float(form.getfirst("LDH_PYRkr", "0.009655"))
model.parameters['LDH_PYRkc'].value = float(form.getfirst("LDH_PYRkc", "14.775252"))
model.parameters['LDH_NADkf'].value = float(form.getfirst("LDH_NADkf", "0.029544"))
model.parameters['LDH_NADkr'].value = float(form.getfirst("LDH_NADkr", "0.009655"))
model.parameters['revLDH_PYRkf'].value = float(form.getfirst("revLDH_PYRkf", "0.00014"))
model.parameters['revLDH_PYRkr'].value = float(form.getfirst("revLDH_PYRkr", "20.677645"))
model.parameters['revLDH_PYRkc'].value = float(form.getfirst("revLDH_PYRkc", "0.01928"))
model.parameters['revLDH_NADkf'].value = float(form.getfirst("revLDH_NADkf", "0.00014"))
model.parameters['revLDH_NADkr'].value = float(form.getfirst("revLDH_NADkr", "20.677645"))
model.parameters['PGM_INHkf'].value = float(form.getfirst("PGM_INHkf", "0"))
model.parameters['PGM_INHkr'].value = float(form.getfirst("PGM_INHkr", "0"))
model.parameters['ENO_INHkf'].value = float(form.getfirst("ENO_INHkf", "0"))
model.parameters['ENO_INHkr'].value = float(form.getfirst("ENO_INHkr", "0"))
model.parameters['PKM_INHkf'].value = float(form.getfirst("PKM_INHkf", "0"))
model.parameters['PKM_INHkr'].value = float(form.getfirst("PKM_INHkr", "0"))
model.parameters['LDH_INHkf'].value = float(form.getfirst("LDH_INHkf", "0"))
model.parameters['LDH_INHkr'].value = float(form.getfirst("LDH_INHkr", "0"))
t = np.linspace(0,time)
out = odesolve(model, t)
print("""
<head><title>PGAM Assay Model</title></head>
<body>
The default parameters were fit to experimental data, as shown <a href="fitparams.png">here</a>.
<form action="pgam.cgi" style="vertical-align:top">
<fieldset>
<legend>INH</legend>
<label for=i1>PGM kf</label> <input id=l1 size=8 type="text" name="PGM_INHkf" value="%s">
<br>
<label for=i2>PGM kr</label> <input id=l2 size=8 type="text" name="PGM_INHkr" value="%s">
<hr>
<label for=i1>ENO kf</label> <input id=l1 size=8 type="text" name="ENO_INHkf" value="%s">
<br>
<label for=i2>ENO kr</label> <input id=l2 size=8 type="text" name="ENO_INHkr" value="%s">
<hr>
<label for=i1>PKM kf</label> <input id=l1 size=8 type="text" name="PKM_INHkf" value="%s">
<br>
<label for=i2>PKM kr</label> <input id=l2 size=8 type="text" name="PKM_INHkr" value="%s">
<hr>
<label for=i1>LDH kf</label> <input id=l1 size=8 type="text" name="LDH_INHkf" value="%s">
<br>
<label for=i2>LDH kr</label> <input id=l2 size=8 type="text" name="LDH_INHkr" value="%s">
</fieldset>
<table>
<tr><td>
<fieldset>
<legend>PGM</legend>
<label for=i1>kf</label> <input id=l1 size=8 type="text" name="PGM_PG2kf" value="%s">
<br>
<label for=i2>kr</label> <input id=l2 size=8 type="text" name="PGM_PG2kr" value="%s">
<br>
<label for=i2>kc</label> <input id=l2 size=8 type="text" name="PGM_PG2kc" value="%s">
</fieldset>
</td></tr>
<tr><td>
<fieldset>
<legend>ENO</legend>
<label for=i1>kf</label> <input id=l1 size=8 type="text" name="ENO_PG3kf" value="%s">
<br>
<label for=i2>kr</label> <input id=l2 size=8 type="text" name="ENO_PG3kr" value="%s">
<br>
<label for=i2>kc</label> <input id=l2 size=8 type="text" name="ENO_PG3kc" value="%s">
</fieldset>
</td></tr>
</table>
<table id=rtab>
<tr>
<td>
<fieldset>
<legend>PKM</legend>
<label for=i1>kf</label> <input id=l1 size=8 type="text" name="PKM_PEPkf" value="%s">
<br>
<label for=i2>kr</label> <input id=l2 size=8 type="text" name="PKM_PEPkr" value="%s">
<br>
<label for=i2>kc</label> <input id=l2 size=8 type="text" name="PKM_PEPkc" value="%s">
<br>
<label for=i2>kf (ADP)</label> <input id=l2 size=8 type="text" name="PKM_ADPkf" value="%s">
<br>
<label for=i2>kr (ADP)</label> <input id=l2 size=8 type="text" name="PKM_ADPkr" value="%s">
</fieldset>
<fieldset>
<legend>LDH</legend>
<label for=i1>kf</label> <input id=l1 size=8 type="text" name="LDH_PYRkf" value="%s">
<br>
<label for=i2>kr</label> <input id=l2 size=8 type="text" name="LDH_PYRkr" value="%s">
<br>
<label for=i2>kc</label> <input id=l2 size=8 type="text" name="LDH_PYRkc" value="%s">
<br>
<label for=i2>kf (NADH)</label> <input id=l2 size=8 type="text" name="LDH_NADkf" value="%s">
<br>
<label for=i2>kr (NADH)</label> <input id=l2 size=8 type="text" name="LDH_NADkr" value="%s">
</fieldset>
<fieldset>
<legend>Reverse LDH</legend>
<label for=i1>kf</label> <input id=l1 size=8 type="text" name="revLDH_PYRkf" value="%s">
<br>
<label for=i2>kr</label> <input id=l2 size=8 type="text" name="revLDH_PYRkr" value="%s">
<br>
<label for=i2>kc</label> <input id=l2 size=8 type="text" name="revLDH_PYRkc" value="%s">
<br>
<label for=i2>kf (NAD)</label> <input id=l2 size=8 type="text" name="revLDH_NADkf" value="%s">
<br>
<label for=i2>kr (NAD)</label> <input id=l2 size=8 type="text" name="revLDH_NADkr" value="%s">
</fieldset>
</td></tr>
<tr><td>
<fieldset>
<legend>Initial Amounts</legend>
<table id=conc>
<tr>
<td><label for=i1>PGM</label> <input id=l1 size=6 type="text" name="PGM_0" value="%s"></td>
<td><label for=i2>ENO</label> <input id=l2 size=6 type="text" name="ENO_0" value="%s"></td>
<td><label for=i1>PKM</label> <input id=l1 size=6 type="text" name="PKM_0" value="%s"></td>
<td><label for=i2>LDH</label> <input id=l2 size=6 type="text" name="LDH_0" value="%s"></td>
</tr>
<tr>
<td><label for=i1>INH</label> <input id=l1 size=6 type="text" name="INH_0" value="%s"></td>
<td><label for=i2>3PG</label> <input id=l2 size=6 type="text" name="PG3_0" value="%s"></td>
<td><label for=i1>ADP</label> <input id=l1 size=6 type="text" name="ADP_0" value="%s"></td>
<td><label for=i2>NADH_0</label> <input id=l2 size=6 type="text" name="NADH_0" value="%s"></td>
</tr>
</table>
</fieldset>
</td>
</tr>
</table>
<br>
<div style="padding-left: 35em">
<h3 style="display: inline; padding-right: 1em">Time</h3>
<input size=8 type="text" name="time" value ="%s">
<input type="submit" id="submit" value="Submit">
</div>
</form>
""" % (
model.parameters['PGM_INHkf'].value, model.parameters['PGM_INHkr'].value,
model.parameters['ENO_INHkf'].value, model.parameters['ENO_INHkr'].value,
model.parameters['PKM_INHkf'].value, model.parameters['PKM_INHkr'].value,
model.parameters['LDH_INHkf'].value, model.parameters['LDH_INHkr'].value,
model.parameters['PGM_PG2kf'].value, model.parameters['PGM_PG2kr'].value,model.parameters['PGM_PG2kc'].value,
model.parameters['ENO_PG3kf'].value, model.parameters['ENO_PG3kr'].value,model.parameters['ENO_PG3kc'].value,
model.parameters['PKM_PEPkf'].value, model.parameters['PKM_PEPkr'].value,model.parameters['PKM_PEPkc'].value,
model.parameters['PKM_ADPkf'].value, model.parameters['PKM_ADPkr'].value,
model.parameters['LDH_PYRkf'].value, model.parameters['LDH_PYRkr'].value,model.parameters['LDH_PYRkc'].value,
model.parameters['LDH_NADkf'].value, model.parameters['LDH_NADkr'].value,
model.parameters['revLDH_PYRkf'].value, model.parameters['revLDH_PYRkr'].value,model.parameters['revLDH_PYRkc'].value,
model.parameters['revLDH_NADkf'].value, model.parameters['revLDH_NADkr'].value,
model.parameters['PGM_0'].value,
model.parameters['ENO_0'].value,
model.parameters['PKM_0'].value,
model.parameters['LDH_0'].value,
model.parameters['INH_0'].value,
model.parameters['PG3_0'].value,
model.parameters['ADP_0'].value,
model.parameters['NADH_0'].value,
time
))
pg3data = ','.join(np.round(out['oPG3'],2).astype(str))
pg2data = ','.join(np.round(out['oPG2'],2).astype(str))
pepdata = ','.join(np.round(out['oPEP'],2).astype(str))
pyrdata = ','.join(np.round(out['oPYR'],2).astype(str))
lacdata = ','.join(np.round(out['oLAC'],2).astype(str))
nadhdata= ','.join(np.round(out['oNADH'],2).astype(str))
times = ','.join(np.round(t).astype(str))
print("""
<script src="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/1.0.2/Chart.min.js">
</script>
<script src="https://code.jquery.com/jquery-1.11.3.min.js"></script>
<div style="position: relative; width: 800px">
<div style="position: absolute; right: 0; background-color: white; border: 1px solid black; padding-right: 1em" id="legend"></div>
<canvas id="chart" width="900" height="500"></canvas>
</div>
<script>
var data = {
labels: [%s],
datasets: [
{
label: "3PG",
strokeColor: "#0e0",
pointColor: "#0e0",
pointStrokeColor: "#fff",
pointHighlightFill: "#fff",
pointHighlightStroke: "0e0",
data: [%s]
},
{
label: "2PG",
strokeColor: "#0ee",
pointColor: "#0ee",
pointStrokeColor: "#fff",
pointHighlightFill: "#fff",
pointHighlightStroke: "#0ee",
data: [%s]
},
{
label: "PEP",
strokeColor: "#00f",
pointColor: "#00f",
pointStrokeColor: "#fff",
pointHighlightFill: "#fff",
pointHighlightStroke: "#00f",
data: [%s]
},
{
label: "PYR",
strokeColor: "#ee0",
pointColor: "#ee0",
pointStrokeColor: "#fff",
pointHighlightFill: "#fff",
pointHighlightStroke: "#ee0",
data: [%s]
},
{
label: "LAC",
strokeColor: "#f0f",
pointColor: "#f0f",
pointStrokeColor: "#fff",
pointHighlightFill: "#fff",
pointHighlightStroke: "#f0f",
data: [%s]
},
{
label: "NADH",
strokeColor: "#f00",
pointColor: "#f00",
pointStrokeColor: "#fff",
pointHighlightFill: "#fff",
pointHighlightStroke: "#f00",
strokeWidth: 4,
data: [%s]
}
]
};
""" % (times, pg3data, pg2data,pepdata,pyrdata,lacdata,nadhdata))
print("""
// Get the context of the canvas element we want to select
var ctx = document.getElementById("chart").getContext("2d");
var chart = new Chart(ctx).Line(data, {datasetFill: false, scaleIntegersOnly: false, scaleBeginAtZero: true, """)
print(r'multiTooltipTemplate: "<%= datasetLabel %> - <%= value %>",')
print(r'legendTemplate : "<ul class=\"<%=name.toLowerCase()%>-legend\"><% for (var i=0; i<datasets.length; i++){%><span style=\"color:<%=datasets[i].strokeColor%>\"><li><%if(datasets[i].label){%><%=datasets[i].label%><%}%></li></span><%}%></ul>"')
print("""
});
var legend = chart.generateLegend();
//and append it to your page somewhere
$("#legend").append(legend);
</script>
</body>
""")
Write a website that does MadLibs.
ssh userid@python.mscbio2025.net
mkdir public_html
chmod +x .
chmod +rx public_html
cd public_html
touch madlibs.py
chmod +x madlibs.py
nano madlibs.py
Visit your website at http://python.mscbio2025.net/~userid/
#!/usr/bin/env python3
import cgi
print("Content-Type: text/html\n")
print("Hello!")