%%html
<script src="https://bits.csb.pitt.edu/preamble.js"></script>
# Digital images
from matplotlib import pyplot as plt
img = plt.imread('digitalImage.png')
plt.figure(figsize=(15,10))
plt.imshow(img)
plt.show()
In a grayscale image the pixel contains a single intensity quantized to a certain bit depth
In a color image a pixel is (usually) a triple (red,green,blue) of color values where each color intensity usually ranges from 0-255 (24-bit color).
%%html
<div id="imcol" style="width: 500px"></div>
<script>
var divid = '#imcol';
jQuery(divid).asker({
id: divid,
question: "Which contains the most information?",
answers: ['Gray','Color'],
extra: ['A grayscale image where values range from 0 to 4095', 'A color image where pixel values range from 0 to 255'],
server: "https://bits.csb.pitt.edu/asker.js/example/asker.cgi",
charter: chartmaker})
$(".jp-InputArea .o:contains(html)").closest('.jp-InputArea').hide();
</script>
It is very common for RGB color values to be represented in hexadecimal (e.g., HTML).
Hexadecimal number are usually indicated with a 0x
or #
prefix.
In hexadecimal, each digit can take one of 16 values (as opposed to 10). This means that each color can be represented with two digits (16*16 = 256)
Hex | Dec |
---|---|
A | 10 |
B | 11 |
C | 12 |
D | 13 |
E | 14 |
F | 15 |
%%html
<div id="hex1" style="width: 500px"></div>
<script>
var divid = '#hex1';
jQuery(divid).asker({
id: divid,
question: "What is the decimal value of 0x1F?",
answers: ['11','16','17','31','32'],
server: "https://bits.csb.pitt.edu/asker.js/example/asker.cgi",
charter: chartmaker})
$(".jp-InputArea .o:contains(html)").closest('.jp-InputArea').hide();
</script>
%%html
<div id="hex2" style="width: 500px"></div>
<script>
var divid = '#hex2';
jQuery(divid).asker({
id: divid,
question: "What is the decimal value of 0xfe?",
answers: ['15','32','127','254','255'],
server: "https://bits.csb.pitt.edu/asker.js/example/asker.cgi",
charter: chartmaker})
$(".jp-InputArea .o:contains(html)").closest('.jp-InputArea').hide();
</script>
%%html
<div id="hex3" style="width: 500px"></div>
<script>
var divid = '#hex3';
jQuery(divid).asker({
id: divid,
question: "What color is #ff00ff?",
answers: ['green','cyan','yellow','magenta','I failed art'],
server: "https://bits.csb.pitt.edu/asker.js/example/asker.cgi",
charter: chartmaker})
$(".jp-InputArea .o:contains(html)").closest('.jp-InputArea').hide();
</script>
print(0x1f, 0xfe)
31 254
<div style="color: #ff00ff">Hello</div>
The Python Imaging Library provides the ability to read, write an manipulate images in all the common formats. Some key modules:
Despite being a popular package, PIL development stopped in 2011 with no new releases since 2009.
Pillow is a fork of PIL that is fully backwards compatible and updated (and is what you are actually using rather than the original PIL).
!wget http://bits.csb.pitt.edu/images/image1.tif
--2023-11-11 17:51:01-- http://bits.csb.pitt.edu/images/image1.tif Resolving bits.csb.pitt.edu (bits.csb.pitt.edu)... 136.142.4.139 Connecting to bits.csb.pitt.edu (bits.csb.pitt.edu)|136.142.4.139|:80... connected. HTTP request sent, awaiting response... 200 OK Length: 921814 (900K) [image/tiff] Saving to: ‘image1.tif’ image1.tif 100%[===================>] 900.21K 1.11MB/s in 0.8s 2023-11-11 17:51:02 (1.11 MB/s) - ‘image1.tif’ saved [921814/921814]
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
%matplotlib inline
from PIL import Image
im = Image.open('image1.tif')
im
Actin HSP27 DAPI
PIL refers to the different color channels as bands.
im.getbands()
('R', 'G', 'B')
You can split a color image into it's separate bands.
(r,g,b) = im.split()
r
g
b
Image analysis in this example should done per channel ... Why?
im2 = Image.open('Retina.jpg')
im2
im2.getbands()
('R', 'G', 'B')
r2,g2,b2 = im2.split()
fig, ax = plt.subplots(1,3, figsize=(15,45))
ax[0].imshow(r2,cmap='gray');
ax[1].imshow(g2,cmap='gray')
ax[2].imshow(b2,cmap='gray')
<matplotlib.image.AxesImage at 0x1cc6d3d6e80>
We can convert to grayscale ('L' - luminance)
grey = im.convert('L')
grey
We can convert RGB to HSV space
tmp = im.convert(mode='HSV')
[h,s,v] = tmp.split();
fig, ax = plt.subplots(1,3, figsize=(15,45))
ax[0].imshow(h,cmap='gray');
ax[1].imshow(s,cmap='gray')
ax[2].imshow(v,cmap='gray')
<matplotlib.image.AxesImage at 0x1cc6c8573d0>
import numpy as np
im.getpixel((320,240))
(159, 3, 18)
To get/set pixels directly, first load the pixel map of an image.
cp = im.copy()
pixels = cp.load()
for i in range(cp.size[0]):
for j in range(120,130):
pixels[i,j] = (255,0,255)
cp
Can convert to numpy
array - first dimension (rows) will be y-axis
np.array(im).shape
(480, 640, 3)
np.array(im)[240,320]
array([159, 3, 18], dtype=uint8)
Can get all the pixels in a flat list
list(im.getdata())
[(243, 3, 28), (238, 3, 27), (242, 3, 26), (239, 3, 27), (226, 3, 27), (220, 3, 26), (195, 3, 27), (179, 3, 26), (171, 3, 27), (163, 4, 28), (163, 3, 27), (148, 3, 28), (145, 4, 27), (146, 3, 27), (137, 4, 27), (136, 4, 27), (136, 3, 28), (124, 4, 28), (125, 4, 28), (121, 3, 27), (116, 4, 28), (113, 4, 26), (107, 3, 28), (107, 4, 27), (103, 3, 29), (96, 3, 28), (93, 3, 30), (95, 3, 27), (87, 3, 28), (94, 3, 28), (91, 3, 27), (94, 3, 28), (87, 3, 27), (93, 3, 28), (82, 3, 27), (79, 3, 28), (78, 4, 27), (84, 4, 28), (79, 4, 29), (85, 4, 28), (82, 4, 29), (83, 3, 29), (81, 3, 30), (70, 4, 30), (79, 4, 28), (78, 4, 29), (77, 4, 28), (81, 4, 29), (80, 4, 30), (72, 3, 30), (76, 4, 30), (77, 4, 30), (84, 4, 29), (84, 4, 31), (80, 4, 30), (87, 4, 33), (88, 4, 31), (89, 4, 34), (89, 4, 32), (96, 4, 33), (89, 4, 32), (91, 4, 33), (92, 4, 32), (93, 4, 31), (96, 4, 31), (96, 4, 30), (103, 4, 31), (103, 4, 31), (93, 4, 31), (106, 4, 30), (100, 4, 31), (105, 4, 31), (108, 4, 31), (106, 4, 32), (110, 4, 32), (101, 4, 31), (105, 3, 32), (102, 4, 32), (107, 4, 33), (114, 3, 34), (111, 4, 35), (106, 4, 36), (104, 4, 35), (106, 4, 35), (112, 4, 37), (120, 4, 40), (107, 4, 39), (108, 4, 41), (110, 4, 43), (107, 4, 46), (102, 3, 47), (108, 4, 47), (109, 4, 48), (106, 3, 51), (106, 4, 49), (103, 4, 53), (99, 4, 53), (102, 4, 55), (99, 4, 58), (109, 4, 58), (104, 4, 60), (97, 4, 59), (101, 5, 59), (91, 4, 60), (96, 3, 58), (92, 4, 60), (97, 4, 62), (96, 4, 65), (92, 4, 66), (95, 4, 69), (92, 4, 70), (91, 4, 69), (91, 3, 68), (93, 3, 66), (96, 4, 66), (92, 3, 65), (98, 3, 64), (86, 3, 62), (88, 4, 64), (95, 3, 64), (97, 3, 63), (81, 3, 64), (82, 4, 64), (88, 3, 63), (84, 3, 65), (75, 3, 66), (79, 4, 69), (84, 3, 68), (86, 3, 68), (83, 3, 66), (84, 3, 65), (81, 3, 64), (81, 3, 65), (87, 3, 66), (78, 3, 64), (86, 3, 64), (83, 3, 65), (82, 3, 62), (82, 3, 64), (83, 3, 64), (90, 3, 65), (82, 3, 64), (88, 3, 62), (83, 3, 64), (83, 4, 64), (91, 3, 62), (87, 3, 58), (81, 3, 58), (87, 3, 57), (80, 3, 56), (88, 3, 52), (84, 3, 49), (86, 3, 47), (86, 3, 48), (81, 3, 44), (81, 3, 41), (80, 2, 40), (88, 3, 39), (87, 3, 38), (82, 3, 38), (89, 2, 36), (83, 3, 37), (83, 3, 35), (88, 2, 34), (84, 3, 34), (83, 3, 33), (83, 3, 33), (84, 2, 33), (89, 3, 33), (85, 3, 32), (84, 3, 31), (88, 3, 31), (86, 3, 31), (89, 3, 32), (88, 2, 31), (90, 3, 31), (91, 3, 31), (88, 3, 31), (90, 2, 30), (96, 3, 31), (96, 2, 32), (103, 3, 30), (106, 3, 28), (106, 2, 28), (113, 2, 29), (110, 2, 29), (104, 2, 30), (110, 2, 29), (101, 2, 29), (103, 2, 29), (107, 2, 28), (107, 3, 29), (108, 3, 28), (102, 2, 28), (107, 2, 28), (104, 2, 28), (105, 2, 29), (114, 2, 29), (105, 3, 29), (109, 2, 29), (109, 2, 29), (111, 2, 30), (110, 2, 29), (106, 2, 29), (119, 2, 31), (117, 2, 30), (112, 2, 30), (114, 2, 30), (114, 2, 28), (124, 2, 30), (124, 2, 30), (119, 2, 30), (124, 2, 30), (117, 2, 32), (118, 2, 29), (126, 2, 30), (124, 2, 28), (128, 2, 31), (128, 3, 30), (130, 2, 31), (135, 2, 30), (124, 2, 30), (134, 2, 30), (132, 2, 30), (138, 2, 31), (146, 2, 31), (149, 2, 31), (141, 2, 32), (139, 2, 30), (148, 2, 32), (146, 2, 32), (151, 2, 32), (151, 2, 32), (154, 2, 34), (167, 2, 35), (158, 2, 33), (162, 2, 34), (169, 2, 35), (175, 2, 34), (179, 2, 36), (186, 2, 36), (177, 2, 36), (186, 1, 36), (186, 2, 37), (196, 1, 38), (192, 1, 38), (194, 2, 39), (195, 1, 38), (204, 2, 39), (210, 2, 40), (205, 1, 38), (205, 2, 40), (215, 2, 39), (200, 1, 42), (205, 1, 41), (212, 1, 42), (221, 1, 43), (219, 1, 42), (216, 1, 45), (215, 1, 45), (203, 1, 47), (213, 2, 46), (191, 1, 47), (206, 2, 46), (207, 2, 46), (191, 1, 48), (180, 1, 50), (162, 1, 49), (165, 1, 52), (149, 1, 52), (154, 1, 54), (142, 1, 54), (143, 1, 55), (139, 1, 56), (133, 1, 58), (135, 1, 59), (136, 1, 58), (131, 1, 60), (136, 1, 61), (136, 1, 60), (136, 2, 62), (141, 1, 62), (135, 1, 62), (137, 2, 66), (132, 2, 68), (140, 1, 68), (146, 1, 69), (153, 2, 71), (138, 1, 73), (134, 1, 72), (139, 1, 74), (138, 1, 76), (140, 1, 76), (127, 2, 80), (136, 1, 82), (139, 1, 80), (129, 1, 83), (136, 1, 83), (137, 1, 83), (133, 2, 82), (129, 1, 86), (139, 1, 84), (131, 1, 83), (138, 1, 85), (139, 2, 83), (140, 1, 84), (150, 1, 87), (146, 1, 87), (147, 1, 85), (142, 1, 86), (144, 1, 85), (146, 1, 84), (151, 1, 85), (151, 1, 87), (146, 1, 85), (141, 1, 85), (141, 2, 84), (156, 1, 84), (157, 1, 87), (153, 1, 88), (153, 1, 92), (151, 1, 96), (147, 1, 98), (151, 1, 96), (154, 1, 91), (150, 1, 87), (158, 1, 83), (151, 1, 80), (154, 1, 80), (166, 1, 78), (174, 1, 76), (175, 1, 72), (179, 1, 70), (179, 1, 68), (183, 1, 67), (182, 2, 66), (180, 1, 63), (183, 1, 62), (180, 1, 59), (184, 1, 58), (178, 1, 55), (187, 2, 55), (187, 1, 52), (176, 1, 52), (156, 1, 50), (147, 1, 51), (155, 1, 50), (138, 1, 49), (139, 2, 49), (132, 1, 47), (126, 1, 46), (116, 1, 46), (125, 1, 44), (123, 1, 45), (116, 1, 45), (118, 2, 43), (106, 1, 42), (111, 1, 43), (112, 2, 42), (99, 1, 42), (99, 1, 41), (100, 1, 39), (100, 2, 38), (99, 1, 38), (98, 1, 37), (96, 1, 36), (100, 1, 34), (98, 1, 35), (90, 2, 34), (92, 1, 33), (95, 1, 33), (95, 1, 33), (97, 1, 31), (89, 1, 30), (89, 1, 31), (102, 1, 30), (97, 2, 29), (94, 1, 29), (90, 1, 27), (91, 1, 27), (90, 1, 27), (88, 1, 25), (94, 1, 26), (96, 1, 25), (90, 1, 26), (98, 1, 25), (98, 1, 24), (103, 1, 22), (108, 1, 22), (112, 1, 22), (123, 1, 21), (125, 1, 21), (107, 1, 21), (96, 1, 20), (92, 1, 21), (83, 2, 19), (83, 1, 19), (80, 1, 20), (75, 1, 19), (75, 1, 19), (72, 1, 18), (73, 1, 19), (68, 1, 18), (70, 1, 18), (64, 1, 18), (66, 1, 18), (65, 1, 17), (57, 1, 17), (55, 1, 16), (63, 1, 17), (58, 1, 17), (58, 1, 17), (61, 1, 16), (58, 1, 16), (56, 1, 16), (64, 1, 17), (68, 1, 17), (64, 1, 16), (67, 1, 16), (58, 1, 16), (64, 1, 15), (65, 1, 15), (56, 1, 15), (61, 1, 16), (61, 1, 16), (61, 1, 15), (56, 1, 16), (55, 1, 15), (48, 1, 16), (46, 1, 15), (45, 1, 15), (49, 1, 15), (42, 1, 15), (42, 1, 15), (47, 1, 14), (39, 1, 14), (40, 1, 14), (44, 1, 14), (42, 1, 15), (43, 1, 15), (45, 1, 14), (44, 1, 14), (52, 1, 15), (40, 1, 14), (40, 1, 14), (33, 1, 14), (35, 1, 14), (37, 1, 14), (40, 1, 16), (42, 1, 15), (45, 1, 14), (44, 1, 14), (49, 1, 15), (55, 1, 15), (53, 1, 15), (49, 1, 15), (49, 1, 14), (56, 1, 15), (49, 1, 15), (49, 1, 16), (52, 1, 15), (58, 1, 15), (48, 1, 14), (56, 1, 15), (52, 2, 15), (56, 1, 15), (59, 2, 14), (59, 1, 15), (59, 1, 15), (54, 1, 14), (48, 1, 14), (44, 1, 14), (47, 1, 14), (48, 1, 14), (47, 1, 13), (42, 1, 14), (41, 1, 13), (42, 1, 12), (43, 1, 13), (45, 1, 13), (41, 1, 13), (53, 1, 13), (52, 1, 13), (49, 1, 13), (45, 1, 13), (35, 1, 13), (28, 1, 12), (32, 1, 12), (30, 1, 12), (30, 1, 12), (32, 1, 12), (27, 1, 12), (23, 1, 12), (25, 1, 12), (23, 1, 12), (23, 1, 12), (23, 1, 12), (21, 1, 12), (25, 1, 12), (21, 1, 11), (19, 1, 12), (24, 1, 12), (20, 1, 12), (21, 1, 12), (20, 1, 12), (19, 1, 12), (21, 1, 12), (19, 1, 11), (17, 1, 11), (21, 1, 12), (14, 1, 12), (15, 1, 12), (17, 1, 12), (14, 1, 12), (19, 1, 12), (12, 1, 12), (16, 1, 12), (16, 1, 12), (15, 1, 12), (11, 1, 11), (14, 1, 12), (12, 1, 12), (15, 1, 11), (11, 2, 11), (11, 1, 12), (12, 1, 11), (11, 1, 12), (12, 1, 12), (12, 1, 12), (12, 1, 12), (13, 1, 12), (15, 1, 11), (8, 2, 12), (9, 1, 11), (10, 1, 12), (10, 1, 12), (7, 1, 11), (12, 1, 12), (12, 1, 12), (10, 1, 12), (11, 1, 11), (11, 1, 11), (10, 1, 12), (10, 1, 11), (12, 1, 11), (9, 1, 11), (11, 1, 12), (12, 1, 12), (9, 1, 11), (11, 1, 12), (10, 1, 12), (13, 1, 12), (12, 1, 11), (13, 1, 11), (13, 1, 11), (14, 1, 11), (11, 1, 11), (12, 1, 10), (16, 1, 11), (14, 1, 12), (16, 1, 12), (18, 1, 11), (18, 1, 11), (19, 2, 11), (25, 1, 11), (26, 1, 12), (22, 1, 12), (29, 1, 11), (34, 2, 12), (38, 2, 11), (38, 1, 11), (50, 1, 11), (55, 2, 11), (62, 2, 11), (65, 2, 11), (78, 3, 12), (84, 2, 11), (90, 2, 11), (77, 2, 11), (66, 2, 11), (56, 2, 12), (50, 2, 11), (42, 2, 11), (39, 2, 12), (41, 2, 12), (38, 3, 11), (41, 2, 11), (32, 2, 12), (38, 3, 10), (39, 2, 11), (37, 2, 11), (35, 2, 11), (34, 3, 12), (37, 3, 12), (33, 3, 12), (34, 3, 12), (37, 2, 12), (41, 4, 12), (32, 3, 12), (37, 3, 12), (37, 3, 12), (28, 4, 12), (25, 4, 12), (23, 4, 12), (29, 4, 12), (27, 4, 11), (32, 4, 12), (30, 5, 11), (25, 5, 12), (26, 5, 12), (22, 6, 12), (27, 5, 12), (24, 5, 13), (24, 5, 12), (24, 5, 12), (19, 6, 14), (24, 6, 13), (20, 6, 13), (18, 6, 13), (24, 7, 13), (20, 7, 14), (22, 7, 13), (17, 6, 13), (16, 7, 13), (19, 6, 14), (23, 7, 14), (18, 8, 14), (27, 8, 14), (21, 7, 13), (20, 7, 14), (22, 7, 14), (23, 7, 14), (21, 7, 14), (22, 6, 14), (22, 6, 14), (18, 6, 14), (18, 6, 15), (20, 6, 14), (19, 6, 14), (18, 6, 14), (248, 3, 26), (249, 3, 27), (246, 3, 27), (237, 3, 27), (221, 3, 27), (198, 3, 26), (180, 4, 26), (167, 4, 27), (158, 4, 28), (160, 4, 26), (151, 3, 27), (147, 3, 28), (147, 3, 28), (136, 4, 28), (140, 4, 28), (141, 3, 28), (136, 3, 28), (127, 3, 28), (122, 3, 29), (120, 3, 27), (115, 3, 29), (114, 3, 27), (112, 3, 29), (107, 3, 28), (102, 3, 29), (92, 4, 28), (92, 4, 27), (94, 3, 28), (91, 3, 28), (98, 4, 28), (85, 3, 27), (88, 3, 29), (85, 3, 27), (87, 4, 28), (92, 3, 26), (84, 4, 27), (92, 4, 27), (75, 3, 29), (81, 4, 29), (84, 4, 30), (78, 4, 28), (78, 4, 30), (77, 4, 30), (85, 4, 29), (75, 4, 30), (77, 4, 30), (79, 4, 29), (75, 4, 29), (74, 4, 30), (86, 4, 30), (76, 4, 29), (83, 4, 30), (83, 4, 30), (83, 4, 30), (83, 5, 31), (83, 4, 33), (90, 4, 33), (89, 4, 35), (82, 4, 34), (91, 4, 34), (90, 4, 33), (97, 4, 31), (93, 4, 33), (92, 5, 30), (94, 4, 31), (92, 4, 31), (102, 4, 31), (100, 5, 31), (99, 4, 29), (104, 4, 31), (106, 4, 32), (99, 4, 32), (110, 4, 31), (105, 4, 31), (109, 4, 32), (112, 4, 32), (105, 4, 32), (117, 4, 33), (111, 4, 33), (107, 4, 33), (114, 5, 35), (119, 4, 36), (106, 5, 37), (108, 5, 38), (118, 4, 38), (111, 4, 39), (112, 4, 42), (108, 5, 42), (110, 4, 44), (105, 4, 46), (106, 4, 47), (107, 4, 47), (105, 4, 48), (107, 4, 51), (103, 4, 51), (101, 4, 52), (108, 4, 53), (103, 4, 56), (105, 4, 60), (100, 4, 62), (98, 4, 62), (97, 4, 64), (98, 4, 63), (95, 4, 62), (100, 4, 60), (96, 4, 61), (91, 4, 64), (94, 4, 68), (94, 4, 71), (97, 4, 72), (89, 4, 74), (91, 4, 76), (89, 4, 73), (91, 3, 69), (81, 3, 69), (90, 3, 70), (89, 4, 67), (91, 4, 68), (91, 4, 67), (81, 4, 66), (80, 3, 65), (87, 4, 66), (87, 3, 66), (88, 3, 65), (86, 4, 63), (86, 3, 67), (85, 3, 69), (82, 3, 70), (84, 4, 71), (88, 4, 69), (75, 3, 67), (83, 3, 65), (80, 4, 65), (77, 3, 65), (87, 3, 64), (87, 3, 65), (87, 4, 64), (82, 3, 64), (81, 3, 64), (82, 3, 65), (83, 3, 67), (83, 3, 66), (92, 3, 67), (82, 3, 68), (84, 3, 62), (79, 3, 61), (88, 2, 61), (87, 3, 60), (83, 3, 57), (86, 3, 56), (89, 3, 53), (86, 3, 52), (83, 3, 51), (83, 3, 49), (79, 3, 44), (92, 3, 44), (87, 3, 40), (81, 3, 37), (88, 3, 38), (83, 3, 37), (85, 3, 36), (90, 4, 36), (88, 3, 36), (87, 3, 34), (82, 3, 35), (90, 2, 35), (89, 2, 33), (81, 3, 32), (81, 3, 33), (90, 3, 32), (89, 2, 32), (90, 2, 32), (88, 2, 33), (86, 3, 32), (93, 3, 32), (88, 2, 30), (89, 3, 31), (96, 3, 30), (91, 3, 30), (95, 3, 30), (103, 2, 30), (102, 2, 29), (109, 2, 30), (109, 3, 28), (109, 3, 28), (115, 3, 29), (112, 3, 27), (107, 3, 29), (106, 2, 29), (101, 3, 28), (109, 2, 29), (103, 3, 28), (100, 2, 28), (113, 2, 29), (111, 2, 28), (104, 2, 29), (115, 2, 29), (103, 2, 29), (107, 2, 29), (111, 2, 29), (108, 2, 30), (113, 2, 29), (115, 2, 30), (118, 2, 30), (115, 2, 30), (113, 2, 30), (122, 2, 31), (120, 2, 30), (113, 2, 30), (122, 2, 30), (123, 2, 32), (123, 2, 29), (124, 2, 29), (125, 2, 30), (121, 2, 28), (123, 2, 30), (125, 2, 29), (128, 2, 30), (137, 2, 30), (130, 2, 30), (130, 3, 29), (127, 2, 31), (129, 2, 31), (137, 2, 30), (143, 2, 30), (141, 2, 31), (138, 2, 31), (140, 2, 31), (140, 2, 31), (147, 2, 31), (149, 2, 33), (149, 2, 32), (153, 2, 32), (153, 2, 34), (159, 2, 33), (160, 2, 34), (170, 2, 35), (164, 2, 34), (181, 2, 35), (179, 2, 34), (177, 1, 35), (185, 2, 36), (184, 2, 37), (186, 2, 36), (195, 2, 36), (198, 2, 37), (198, 1, 37), (200, 2, 37), (204, 1, 39), (210, 1, 39), (210, 2, 40), (213, 1, 39), (200, 2, 41), (208, 2, 44), (220, 2, 42), (224, 2, 43), (212, 2, 44), (205, 1, 43), (211, 2, 43), (210, 2, 44), (209, 1, 45), (212, 1, 45), (214, 1, 47), (216, 1, 46), (206, 1, 46), (204, 2, 47), (192, 2, 49), (183, 2, 48), (174, 1, 51), (154, 1, 50), (156, 2, 54), (147, 1, 53), (143, 1, 52), (139, 1, 55), (139, 1, 56), (145, 1, 56), (135, 1, 58), (150, 1, 58), (136, 1, 57), (134, 2, 60), (141, 2, 62), (143, 1, 62), (143, 2, 64), (145, 1, 67), (145, 1, 66), (149, 1, 68), (149, 2, 66), (148, 1, 69), (141, 1, 69), (135, 1, 69), (139, 1, 73), (138, 1, 73), (143, 1, 74), (136, 2, 78), (150, 2, 76), (145, 1, 80), (137, 1, 79), (145, 1, 82), (135, 1, 80), (136, 1, 82), (139, 2, 83), (143, 1, 83), (144, 1, 80), (140, 2, 81), (151, 2, 84), (146, 1, 81), (147, 1, 82), (148, 1, 84), (154, 1, 82), (144, 1, 82), (152, 1, 83), (150, 2, 83), (154, 2, 83), (158, 1, 83), (158, 1, 82), (153, 1, 83), (152, 2, 85), (163, 1, 87), (160, 1, 87), (159, 1, 89), (162, 1, 90), (156, 1, 94), (158, 1, 96), (158, 1, 92), (166, 1, 88), (165, 1, 84), (168, 1, 79), (160, 1, 77), (168, 1, 78), (161, 1, 75), (176, 1, 74), (160, 1, 70), (177, 1, 67), (170, 1, 65), (176, 1, 63), (184, 1, 62), (172, 1, 60), (187, 1, 60), (189, 1, 59), (181, 1, 56), (187, 1, 54), (190, 1, 52), (184, 1, 51), (166, 1, 52), (161, 1, 53), (147, 1, 50), (138, 1, 48), (140, 1, 48), (134, 1, 48), (127, 1, 48), (129, 1, 48), (118, 1, 46), (129, 1, 43), (121, 1, 43), (107, 1, 42), (109, 1, 42), (110, 1, 42), (102, 1, 43), (103, 1, 40), (103, 1, 40), ...]
%%html
<div id="immax" style="width: 500px"></div>
<script>
var divid = '#immax';
jQuery(divid).asker({
id: divid,
question: "What is the maximum pixel value of the blue channel (band) for image1?",
answers: ['127','192','223','255','256'],
server: "https://bits.csb.pitt.edu/asker.js/example/asker.cgi",
charter: chartmaker})
$(".jp-InputArea .o:contains(html)").closest('.jp-InputArea').hide();
</script>
max(b.getdata())
192
np.array(b).max()
192
from PIL import ImageStat
stat = ImageStat.Stat(b)
stat.extrema
[(6, 192)]
%%html
<div id="imcnt" style="width: 500px"></div>
<script>
var divid = '#imcnt';
jQuery(divid).asker({
id: divid,
question: "How many pixels of image1 have a red value of 255?",
answers: ['0','105','1206','5178','65334'],
server: "https://bits.csb.pitt.edu/asker.js/example/asker.cgi",
charter: chartmaker})
$(".jp-InputArea .o:contains(html)").closest('.jp-InputArea').hide();
</script>
bins=np.linspace(0,255,25)
plt.hist(r.getdata(),alpha=0.2,color='#ff0000',bins=bins)
plt.hist(g.getdata(),alpha=0.2,color='#00ff00',bins=bins)
plt.hist(b.getdata(),alpha=0.2,color='#0000ff',bins=bins)
plt.show()
plt.plot(r.histogram(),'r')
plt.plot(g.histogram(),'g')
plt.plot(b.histogram(),'b')
plt.ylim(ymax=24000)
(-6296.6, 24000.0)
What does the red peak at 255 mean?
Equalization attempts to normalizes the image histogram to create a uniform distribution of grayscale values. This makes it easier to see differences, but distorts the meaning of the intensities (the transformation is non-linear).
from PIL import ImageOps
beq = ImageOps.equalize(b)
f = plt.figure(figsize=(12,6)); f.add_subplot(1, 2, 1)
plt.imshow(np.array(b),cmap = cm.Greys_r); f.add_subplot(1, 2, 2)
plt.imshow(np.array(beq),cmap = cm.Greys_r);
plt.plot(b.histogram(),'r')
plt.plot(beq.histogram(),'k')
[<matplotlib.lines.Line2D at 0x7f7d3dbf3280>]
Maximize (normalize) image contrast. This function calculates a histogram of the input image, removes a cutoff percent of the lightest and darkest pixels from the histogram, and remaps the image so that the darkest remaining pixel becomes black (0), and the lightest becomes white (255).
bcon = ImageOps.autocontrast(b,0.5)
f = plt.figure(figsize=(12,6)); f.add_subplot(1, 2, 1)
plt.imshow(np.array(b),cmap = cm.Greys_r); f.add_subplot(1, 2, 2)
plt.imshow(np.array(bcon),cmap = cm.Greys_r);
plt.plot(b.histogram(),'r')
plt.plot(bcon.histogram(),'k');
The point
function can be used to apply a function to every pixel in the image and return the transformed image. This makes it easy to threshold images into a mask.
bthresh = beq.point(lambda x: x if x > 225 else 0)
f = plt.figure(figsize=(12,6)); f.add_subplot(1, 2, 1)
plt.imshow(np.array(beq),cmap = cm.Greys_r); f.add_subplot(1, 2, 2)
plt.imshow(np.array(bthresh),cmap = cm.Greys_r) ;
Looking at the thresholded image, any thoughts on how to count the number of cells?